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Overview



 Last year, the Goldenson Actuarial Research Center 

developed predictive models for long-term care insurance 

(LTCI) claims, mortality and lapse rates.

 Under the guidance of industry actuaries several Poisson 

regression models were constructed to predict the 

aforementioned rates.

Project Background
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Tweedie Model

 Our Objective: Utilizing generalized linear and or additive models (GLM, 

GAM) construct models for LTCI rates that outperform the baseline Poisson 

models in terms of predictive accuracy. 

Project Background



Response Variables

 Lapse Count

 Mortality Count

Predictor Variables (Covariates)

 22 Predictor Variables Included

 16 Categorical

 6 Continuous 

Exposure Variables

 Exposure to lapse or mortality risk 
in months

Summary

 A major U.S. LTCI provided a 
large data set containing 13 
years of aggregated LTCI policy 
information.

 The dataset is massive and 
contains 9,429,590 observations.

 After some cleanup at the 
suggestion of the insurer, we 
were left with approximately 
7,750,000 observations.

The Data



 What is Poisson Regression?

𝑌~𝑃𝑜𝑖𝑠 𝜇 ,      𝑔 𝜇 = 𝑥′𝛽

ln 𝜇 = 𝑥′𝛽 + ln 𝑡 … 𝜇 = 𝑡𝑒𝑥′𝛽

 Poisson regression models are generalized linear models (GLM) 
designed to model count data.

 These models assume the response variable 𝑌 follows a Poisson 
distribution

 The log link function is typically used to relate the linear predictors to 
the mean

 We are interested in modeling E  𝑌 𝑡 =  𝜇 𝑡 where 𝑌 is a count of 
events and 𝑡 is an exposure variable (in our case representing time in 
months). Therefore ln 𝑡 is used as an offset in our models.

Common Industry Method for LTC Rate Data: 

Poisson Regression with Log Link and Offset



 3 Main Assumptions Required for Poisson Regression

1. Perfect homogeneity throughout the sample (the rate 

parameter is the same for each unit of exposure in a given 

observation).

2. Each unit of exposure generates events (e.g. claims, lapses, 

or deaths) in accordance with a Poisson process.

3. Response variable outcomes are mutually independent for 

all observations

Common Industry Method for LTC Rate Data: 

Poisson Regression with Log Link and Offset



1. Over-abundance of zeros

 The data displays more zeros than one would expect given they 

come from a Poisson process

2. Overdispersion

 The Poisson regression model is a single parameter model where 

E(Yi) = Var(Yi).

 Often with real data sets E(Yi) < Var(Yi) (overdispersion).

 In these cases we could use models with more free parameters 

that relate the expectation and the variance. 

 Ex:    E(Yi) = θ*Var(Yi), where θ is a dispersion parameter

Problems with Poisson regression for LTCI Rate 

Data



 Testing for overdispersion with Lagrange multiplier test

Problems with Poisson regression for LTCI Rate 

Data

Mortality Rates

Sample Through Year N
Test 

Statistic*
P-Value

2002 11.19693 0.000819
2003 4.376259 0.036443
2004 3.007823 0.082864
2005 1.84618 0.174228
2006 2.076497 0.149583
2007 4.034079 0.04459
2008 2.198942 0.138105
2009 3.343193 0.067484
2010 2.399046 0.121409
2011 2.773524 0.095835
2012 2.106376 0.146686

Lapse Rates

Sample Through Year N
Test 

Statistic*
P-Value

2002 669190.6 0
2003 777822.2 0
2004 821966.8 0
2005 863701.5 0
2006 1125427 0
2007 1072929 0
2008 1009507 0
2009 1003570 0
2010 1004291 0
2011 1028645 0
2012 1103502 0

*The Test Statistic for the Lagrange multiplier test is distributed 𝜒2 with df = 1



3. Properties of the Poisson Distribution

 The Poisson regression model can predict counts from zero to 

infinity.

 This means our predicted rate defined by (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑢𝑛𝑡

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
) can 

exceed 100%.

Problems with Poisson regression for LTCI Rate 

Data



GLM & GAM Error Structures Considered

 Negative-Binomial Regression

 Zero-Inflated Poisson Regression

 Tweedie Regression

 Generalized Additive Models (GAMs) with Above Error 

Structures

Statistical Learning Techniques Considered

 Random Forest Regression

Improved Methods: Multi-parameter GLM & 

GAM Models designed to handle excess zeros

and overdispersion



 Negative binomial regression is similar to Poisson regression in that it 

models count data therefore we also require an offset variable to 

model rates.

 However, negative binomial models include a shape parameter θ

that helps address the problem of overdispersion.

𝑝 𝑦𝑖 =
Γ 𝑦𝑖 + 𝜃

Γ 𝜃 𝑦𝑖!
𝜇𝑖
𝜃(1 − 𝜇𝑖)

𝑦𝑖 , 𝜃 > 0, 𝑦𝑖 = 0,1,2, …∞ , 𝜇𝑖 =
𝜃

𝜃 + 𝜆𝑖

where

E 𝑦𝑖 = 𝜆𝑖 and Var 𝑦𝑖 = 𝜆𝑖 1 +
1

𝜃
𝜆𝑖

consider
Var 𝑦𝑖

E 𝑦𝑖
= 1 +

1

𝜃
𝜆𝑖 > 1 as a measure of overdispersion

Negative Binomial Regression



 The Zero-Inflated model (ZIP) accounts for extra-Poisson zeros

by assuming there are two processes at work that can 

generate zeros in a sample. 

 One process generates only zeros and occurs with probability 𝑝.

 the other process, occurring with probability (1- 𝑝), generates 

events according to a Poisson distribution with mean 𝜆. The result is 

a distribution in the form,

𝑃 𝑌𝑖 = 0 = 𝑝𝑖 + 1 − 𝑝𝑖 𝑒−𝜆𝑖

𝑃 𝑌𝑖 = 𝑘 =
(1−𝑝𝑖)𝑒

−𝜆𝑖𝜆𝑖
𝑘

𝑘!
, where 𝑘 = {1,2,… ,∞}

Zero-Inflated Poisson Regression (ZIP)



 The Tweedie family are exponential dispersion models which 
include a set of compound Poisson-gamma distributions.

 Suggested for modeling semi-continuous data (positive point 
mass at zero).

 A convenient parameterization of the Tweedie distribution is 
given below where 𝜇 is the location parameter, 𝜎2 is the diffusion 
parameter, and 𝑝 is the power parameter.

𝑓 𝑦 𝜇, 𝜎2, 𝑝) = 𝑎(𝑦|𝜎2, 𝑝)𝑒−
1
2𝜎𝑑(𝑦|𝜇,𝑝)

where

Var[𝑌] = 𝜎2E[𝑌]𝑝 = 𝜎2𝜇𝑝

 When 1< 𝑝 < 2 this corresponds to a compound Poisson-gamma 
distribution

Tweedie Regression



 We take the arrival of events (lapse or death) to be Poisson 

distributed while the non-zero rates are assumed to be 

gamma distributed.

Tweedie Regression



 Random forests are an ensemble learning method for 

classification and regression

Random Forest Regression

 Based on decision trees

 Many trees are grown on random 

subsets of the training data.

 The trees select random subsets of 

the features in the data.

 Predictions from each individual tree 

are averaged through a process 

called bagging (bootstrap 

aggregation)

 Research suggests random forests do 

not over fit (Breiman 2001, Biau 2012)



Let 𝒙 be a vector such that 𝒙 = [  𝑦1 − 𝑦1 ,  𝑦2 − 𝑦2 ,…,  𝑦𝑛 − 𝑦𝑛 , ]
where  𝑦𝑖 and 𝑦𝑖 are the ith predicted and observed responses respectively

 Weighted Median Absolute Prediction Error
 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑀𝑒𝑑𝑖𝑎𝑛 𝒙 ,𝝎 where 𝝎 = exposure1, exposure2, … , exposure𝑛]

 Weighted Median Squared Prediction Error
 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑀𝑒𝑑𝑖𝑎𝑛 𝒙2, 𝝎 where 𝝎 = [exposure1, exposure2, … , exposure𝑛]

 Weighted Mean Absolute Prediction Error

=
 𝑖=1

𝑛 𝜔𝑖|𝑥𝑖|

 𝑖=1
𝑛 𝜔𝑖

 Weighted Mean Squared Prediction Error

=
 𝑖=1

𝑛 𝜔𝑖𝑥𝑖
2

 𝑖=1
𝑛 𝜔𝑖

Metrics of interest & Model Selection 



 How models were compared and selected?

 GLM models were fit to the first n years of data and used to predict 

the (n+1)st year to test out of sample performance.

 Models were chosen which minimized the prediction error statistics 

and which improved when applied to larger subsets of the data.

Metrics of interest & Model Selection 

Year Poisson Zero-Inflated Poisson Negative Binomial Tweedie

MedianAPE Year 3 0.04657917 0.04807680 0.05274269 0.01902117

MedianSPE Year 3 0.00216962 0.00231138 0.00278179 0.00036181

MeanAPE Year 3 0.14742651 0.14774762 0.16277423 0.03787409

MeanSPE Year 3 0.28991497 0.27422015 0.38704965 0.01017436

MedianAPE Year 4 0.04579718 0.04714716 0.05035809 0.01756052

MedianSPE Year 4 0.00209738 0.00222285 0.00253594 0.00030837

MeanAPE Year 4 0.13383555 0.13410427 0.14535156 0.03625792

MeanSPE Year 4 0.19016869 0.18644882 0.24994383 0.01040087

MedianAPE Year 5 0.04342123 0.04480840 0.04772306 0.01673459

MedianSPE Year 5 0.00188540 0.00200779 0.00227749 0.00028005

MeanAPE Year 5 0.12449863 0.12501742 0.13540464 0.03554705

MeanSPE Year 5 0.15985148 0.15752921 0.21831618 0.01038227



 Mortality Rate Models

Results
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 Mortality Rate Models

Results
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 Mortality Rate Models

Results
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 Lapse Rate Models

Results
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 Lapse Rate Models

Results
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 Evidence of overestimation with Poisson regression

Results



 Evidence of overestimation with Poisson regression

Results



 Without accounting for overdispersion, Poisson models will have 
deflated standard errors for model parameters and therefore inflated 
t-statistics.

 For LTCI rate data GLMs with Tweedie errors outperform all other 
models by a substantial margin.

 Tweedie GAM models show no substantial improvement over the 
GLM models and are harder to interpret.

 Random forests are a promising method but we are currently 
restricted by computational performance.

 Negative binomial models performed surprisingly poorly.

Discussion
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